На какой высоте от поверхности земли ускорение свободного падения уменьшиться в 3 раза
Позволю себе не согласиться с ответом предыдущего автора. И вот почему: На высоте 4216 метров летают самолёты и ускорение силы тяжести там практически такое же, как и на поверхности Земли.
Вот решение: Если верить закону всемирного тяготения то g = GM/(R+h)^2. Тогда g1/g2 = (R+h)^2/R^2 = (R^2+2Rh+h^2)/R^2 = 1+2h/R+(h/R)^2=3, решая уравнение относительно h/R имеем h/R = (-2+sqrt(4+12))/2 = 1, то есть на высоте, равной радиусу Земли (если считать от центра Земли получится удвоенный радиус) ускорение свободного падения как раз уменьшится втрое. Радиус Земли =6371 км, или округлённо 6400 км.
Решение. g0=(G*M)/(R^2); g=(G*M)/((R+H)^2); g0/g=3; g0/g=((R+H)/R)^2; 1+H/R=3^0,5; H=R*(3^0,5-1); R=6,4*10^6 метров = 6400 км;

Тело падает с высоты 98 м. Одновременно навстречу ему брошено вертикально вверх другое тело со скоростью 39,2 м/с. Не учитывая сопротивление воздуха, определите на какой высоте от земли встретятся тела. Ускорение свободного падения принять равным 10 м/с2.
X=Xo+Vo*t-(g*t^2)/2

Для первого тела:
X1=98+0*t-(g*t^2)/2


Для второго тела:
X2=0+39,2*t-(g*t^2)/2
Если они встретятся, то X1=X2, тогда
98+0*t-(g*t^2)/2=0+39,2*t-(g*t^2)/2
t=98/39,2=2,5 (с)
Т. Е. Через 2,5 сек они встретятся
Подставляем t в первое уравнение

X1=98+0*t-(g*5^2)/2=98-10*6,25/2=98-31,25=66,75 (м)

Определите высоту над уровнем Земли, на которой ускорение свободного падения уменьшается в три раза.
Дано: g1=10m/c^2, g2=g1/3, Rземли=6400м. Найти: H-H - высота
Решение:g1= (G*Mземли)/R^2.  g2=(G*M)/(R+H)^2
Отсюда пропорция : g1/g2= (G*M) *(R+H)^2/(G*Mземли)*R^2 = 3
H= R*(sqrt3  -1) = 4685м. (приблизительно) Надеюсь, понятно D:
Ускорение свободного падения убывает обратно пропорционально квадрату расстояния от цента Земли.
Обозначим:
- g ускорение свободного падения на поверхности Земли,
- g(h) ускорение свободного падения на высоте h над поверхностью Земли,
- R средний радиус Земли (6370 км),
- отношение \( \frac{g_h}{g} =n. \)
Из приведенной зависимости следует:
\( n= \frac{R^2}{(R+h)^2}. \)
(R+h)² = R²/n,
R+h = R/√n,
h = (R/√n)-R.
Подставив значения R и n, получаем:
h = (6370/(√(1/3) - 6370 =  11033,16 - 6370 = 4663,164 км.

На какой высоте над поверхностью Земли ускорение свободного падения уменьшится в 2 раза?
Ускорение свободного падения уменьшается пропорционально квадрату расстояния. Значит, чтобы оно уменьшилось в два раза, необходимо, чтобы расстояние до центра Земли увеличилось в корень из двух раз. Это примерно в 1.4 раза.
Радиус Земли 6400км, искомое расстояние 6400*1.4 = 8960 км.
Ну а высота будет 8960-6400 = 2560 км

На какой высоте над поверхностью Земли ускорение свободного падения уменьшится в 2 раза?*
Дано:
R - радиус 
m - масса тела
M - масса планеты
Найти: 
h - высота от поверхности планеты
Решение:
F=(G*M*m)\(R+h)²
F=ma ⇒ m=m, a=(G*M)\(R+h)²
a=g ⇒ g=(G*M)\(R+h)²
(R+h)²=2 (т.к. В два раза меньше)
R+h = √2
h=√2 - R 
Но, если мы будем считать, что радиус планеты входит в искомое расстояние, то можно просто его убрать.
h=√2

Определите высоту над уровнем земли на которой ускорение свободного падения уменьшается в 2 раза
1)g1=G\( \frac{M}{(R+h)^2} \), где М-масса Земли,g1-измененное ускорение свободного падение на Земле, R-радиус Земли, h- высота тела над Землей
2)g=G\( \frac{M}{R^2} \)
3)\( \frac{g}{g1} \)=\( \frac{G*M*(R+h)^2}{R^2*G*M} \)=2
\( \frac{(R+h)^2}{R^2} =2 \)
\( \frac{R+h}{R} = \sqrt{2} \)
\( 1+\frac{h}{R} = \sqrt{2} \)
\( h=R*( \sqrt{2} -1) \)
h=6400-(\( \sqrt{2} \)-1)
h≈2651 км

С высоты 100 м над поверхностью Земли отпустили без начальной скорости камень. На какой высоте он окажется через 4 с падения? Ответ выразить в м, округлив до целых. Ускорение свободного падения g=10 м/с2 Сопротивлением воздуха пренебречь.
Странно, что просят округлить, тут все круглое

Камень отпущенный без начальной скорости проходит за время t расстояние, равное
S = gt²/2 = 10*(4*4)/2 = 80 м
Так как начальная высота 100 метров, мы получаем, что после прохождения 80 метров камень оказывается на высоте 100-80 = 20 метров от земли
Ответ: ДВАДЦАТЬ МЕТРОВ

С какой высоты должна упасть капля воды, чтобы, упав на землю, она не оставила после себя мокрого следа? Начальная температура воды была 0ºC, а ускорение свободного падения не зависит от высоты над уровнем моря и равно 10м/с(c в квадрате). Удельная теплота парообразования L=2256 кДж/кг, теплоёмкость воды 4,2 кДж/кг℃. Считать, что вся потенциальная энергия капли был в потрачена на ее нагрев. Ответ выразить в метрах.
Запишем баланс энергий (будем считать, что высота все же мала по сравнению с радиусом Земли, поэтому ускорение и не зависит от высоты)
\( \displaystyle Q = mgh\\ m(c\Delta t + L) = mgh\\\\ h = \frac{c\Delta t+L}{g} = 267.6 \cdot 10^3 \text{ m} \)
На такой высоте облака не образуются. Однако, приближение, что ускорение свободного падения не зависит от высоты еще будет вполне корректно для таких высот (порядка 5% от земного радиуса)

Ракета массой 800 кг была запущена с поверхности Земли вертикально вверх. Рассчитайте высоту, на которой модуль скорости ракеты равен 1,5*10^3 м/с, если ее полная механическая энергия равна 940 мДж. Модуль ускорения свободного падения принять равным 10 м/с^2, сопротивлением воздуха пренебречь.
Дано:
V = 1,5*10³ м/с
m = 800 кг
Е = 940 мДж = 940*10⁶ Дж
g = 10 м/с²
Найти: h -
Решение:
1) E(полная механическая энергия равна) = Е кинетическая + Е потенциальная
2) Е кин. = (m*V²)/2
Е потен. = m*g*h
3) Подставим формулы в изначальное выражение:
E = (m*V²)/2 + m*g*h
4) Подставим значения:
940*10⁶  = (800*2.25*10⁶)/2 + 800*10*h = 900*10⁶+8000*h
8000*h = 940*10⁶ - 900*10⁶
8000*h = 40*10⁶
h = 40*10⁶/8*10³ = 5*10³ м = 5 км

С какой высоты должна упасть капля воды, чтобы, упав на землю, она не оставила и мокрого следа после себя? Считать, что начальная температура капли была 0 градусов по Цельсию, а ускорение свободного падения не зависит от высоты над уровнем моря и равно 10м/с^2. Удельная теплота парообразования L= 2256 кДж/кг, теплоёмкость воды 4,2 кДж/кг’С. Cчитать, что вся потенциальная энергия капли была потрачена на её нагрев. Ответ выразить в метрах
Энергия удара её об землю должна быть выше темпиратуры испарения, ну а если учесть сопротивление воздуха, то думаю капля не испарится.
E=m*g*h E= c*m*t t=100 градусов. Приравняем. Массы сократим, получим высоту падения.
t=100 минус темпиратура окружающего воздуха - может это надо учесть тоже.
Ещё там надо суммировать энергию нагрева и энергию преобразования в пар.